Flow and Heat Transfer to Sisko Nanofluid over a Nonlinear Stretching Sheet

نویسندگان

  • Masood Khan
  • Rabia Malik
  • Asif Munir
  • Waqar Azeem Khan
چکیده

The two-dimensional boundary layer flow and heat transfer to Sisko nanofluid over a non-linearly stretching sheet is scrutinized in the concerned study. Our nanofluid model incorporates the influences of the thermophoresis and Brownian motion. The convective boundary conditions are taken into account. Implementation of suitable transformations agreeing with the boundary conditions result in reduction of the governing equations of motion, energy and concentration into non-linear ordinary differential equations. These coupled non-linear ordinary differential equations are solved analytically by using the homotopy analysis method (HAM) and numerically by the shooting technique. The effects of the thermophoresis and Brownian motion parameters on the temperature and concentration fields are analyzed and graphically presented. The secured results make it clear that the temperature distribution is an increasing function of the thermophoresis and Brownian motion parameters and concentration distribution increases with the thermophoresis parameter but decreases with the Brownian motion parameter. To see the validity of the present work, we made a comparison with the numerical results as well as previously published work with an outstanding compatibility.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three-dimensional chemically reacting radiative MHD flow of nanofluid over a bidirectional stretching surface

This study deals with the three-dimensional flow of a chemically reacting magnetohydrodynamic Sisko fluid over a bidirectional stretching surface filled with the ferrous nanoparticles in the presence of non-uniform heat source/sink, nonlinear thermal radiation, and suction/injection. After applying the self-suitable similarity transforms, the nonlinear ordinary differential equations are solved...

متن کامل

Analytical solution of MHD flow and heat transfer over a permeable nonlinearly stretching sheet in a porous medium filled by a nanofluid

In this paper, the differential transform method and Padé approximation (DTM-Padé) is applied to obtain the approximate analytical solutions of the MHD flow and heat transfer of a nanofluid over a nonlinearly stretching permeable sheet in porous. The similarity solution is used to reduce the governing system of partial differential equations to a set of nonlinear ordinary differential equations...

متن کامل

A modified variable physical properties model, for analyzing nanofluids flow and heat transfer over nonlinearly stretching sheet

In this paper, the problem of laminar nanofluid flow which results from the nonlinear stretching of a flat sheet is investigated numerically. In this paper, a modified variable physical properties model for analyzing nanofluids flow and heat transfer is introduced. In this model, the effective viscosity, density, and thermal conductivity of the solid-liquid mixture (nanofluids) which are common...

متن کامل

MHD Three-Dimensional Stagnation-Point Flow and Heat Transfer of a Nanofluid over a Stretching Sheet

In this study, the three-dimensional magnetohydrodynamic (MHD) boundary layer of stagnation-point flow in a nanofluid was investigated. The Navier–Stokes equations were reduced to a set of nonlinear ordinary differential equations using a similarity transform. The similarity equations were solved for three types of nanoparticles: copper, alumina and titania with water as the base fluid, to inve...

متن کامل

Boundary layer Viscous Flow of Nanofluids and Heat Transfer Over a Nonlinearly Isothermal Stretching Sheet in the Presence of Heat Generation/Absorption and Slip Boundary Conditions

The steady two-dimensional flow of a viscous nanofluid of magnetohydrodynamic (MHD) flow and heattransfer characteristics for the boundary layer flow over a nonlinear stretching sheet is considered. Theflow is caused by a nonlinear stretching sheet with effects of velocity, temperature and concentrationslips. Problem formulation is developed in the pre...

متن کامل

MHD boundary layer flow and heat transfer of Newtonian nanofluids over a stretching sheet with variable velocity and temperature distribution

Laminar boundary layer flow and heat transfer of Newtonian nanofluid over a stretching sheet with the sheet velocity distribution of the form (Uw=CXβ) and the wall temperature distribution of the form (Tw= T∞+ axr) for the steady magnetohydrodynamic(MHD) is studied numerically. The governing momentum and energy equations are transformed to the local non-similarity equations using the appropriat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015